CDF

Perl Reference Manual

Version 3.6.2, March 20, 2016

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2016

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

1 COMPIIING.aaaeeiiiiiiirrrnneicssssssaneeccsssssnnseccsssssssssessnsas |

1.1 How to use the Perl-CDF PACKAZEccceeiuiriiriieiiiieiiniteie ettt ettt ettt st st st eanens 1

2 Programming INTErfacCecoeieciccnnicnscnnicsscnsncssssnsecssssssessssssscsssssssssssssssssnsssssss 3

2.1 M REFEIENCING ...ueiiiiiiiiiiiiiiecc ettt et ettt ettt et et eae st eaesaeesaeeanesreeanens 3
2.2 PaSSING ATGUIMEGIIES ...o..eeuiiriiiiiiiieieiiteteeit et ettt et steese e eaeesaesat e st saee st eas e st ee s e bt ess e bt esseeseessesaeesaesueennesaneseeanensesanens 3
2.3 CDF Status COMSLANTSeoutiiiriieieriieieeiteteeteete et ste et e eueesae st esaesaee st sase st ease st essesteessesseesaesaeessesneensesnnesseennensesanens 4
2.4 CDF FOIMALSooiiiiiiiieiieitete ettt ettt ettt et et et st e e st e st e s e neea s e bt e s et e esa e e st esaeeaeesaesutensesunenneennenseeanens 4
2.5 CDF DaAta TYPES c.eeeuveeueeuririieieeiieie ettt ettt ettt stt ettt et sat e ae st e st sane s st ea s e bt eese bt ess e e st essesaeessesaeensesueenaeeanenseeanens 4
2.6 Datad ENCOGINGS ..c..eeuiiiieiiiiiiiieeieieeeete ettt ettt ettt st st s ae e a e e e bt e s et e e s e e bt e st saeemaeeneenaesanenaeennenneeanens 5
2.7 DaAtad DECOAINESeouviuieniiriieieiieieeit ettt ettt ettt ettt et st e bt st e s st s e e st ea s e bt ees et e ess e e bt essesaeesaesaeessesueenaeeanenseeanens 6
2.8 Variable MaJOTitiescceriiriiiieiiiieieeteteeteet ettt ettt et sttt et e a e e b e e et e s e e st e s e saeesaeeaeesneeanesneeanenreeanens 7
2.9 Record/Dimension VATIANCEScccccoeeririieiieriieiiniieteeeeteeeeesteetesseesesreeases st essesteessesseessesaeessesneessesneessesnnessesanens 8
2,10 COMPIESSIONS ..nvieuriuieniiriieteeiteieeeente et et e esesteeseesteesseeueessesutessesasessesasenseeasesseeeseteesseestenseeaeenseeneensesusensesnnensesanens 8
21T SPATSEIIESS ...veurintieueittentesiteteette e et et e ees et eas et e eseesueesseeaeessesatesseeaee st eas e st ea s e bt e e s et e e ss e aeesa e eteesa e eatenaeeanesaeennenreeanen 9

2111 SPArSE RECOTAS ...couiiiiiniiiieiecieieeteeetee ettt ettt et ettt sa et eae e a e st e saeeanesneeanenreennens 9

2112 SPATSE ATTAYS ..eueeuiiiuieiieiteiteet et et ettt ste et e ete et e et et e eate st s ase s bt ease s bt ease bt eas e bt essesaeesseeneennesueesaeennenseeanenseennens 9
2,12 AEIIDULE SCOPES ettt ettt ettt ettt st st a e e e s a e e e bt e s et e eaa e e bt esa e sueesaesaeesaeeneenneennennesanens 9
2,13 REAA-ONLY MOUEScouiiriiiiiiiieieiieieet ettt ettt st st st e b e et e s e e bt e st saeesaesueenaeeanenaeeanenreeanens 9
2014 ZIVIOAES .ottt e a e st s ae e s a et e a e e a et e an et e aeen e e an e neennenaeennenae 10
205 2010 10 0.0 MOAEScnveiiiiieiie ittt ettt et st st e s et st n e ae e sae e nae 10
2,16 Operational LIMIEScocueiuiiiiiiiiiiiieieeteeee ettt ettt et s e b sae e st e e ne e sne e e e sae e naee 10
2.17 Limits of Names and Other Character SrNESccccoievverieiiinienineeieneete ettt sreene s ene e 11
2.18 Backward File Compatibility With CDEF 2.7c..ccioiiiiiiiiiiiiiiieentetereeee ettt 11
2,19 CRECKSUI ...ttt et et et s a et st eae st ea e st b e s a s e bt eas et e e s et e e s esneennenaeennenaee 12
220 Datd ValIdatiONooieiiiieiiiieie ittt ettt et et st st st st ettt e a e eae e n e e sa e nae 14
221 B-BYE INIEOT ..cuiiiiiieieeeee ettt et st e sttt s st n e n e sae e nae 15

3 StaANAard INTEITACE c.e...ceeeeeeeeeeeneeeereeneeereeeecseseseecsssssssssssssssssssssssesssssssssssssssssssssee 17

I B O D) 25 4 @ (<Y L1 F RS UUS 17
0 0 B 5 101 o) (=T) OO OO OO OO PUP PO PR PSP 18
3.2 CDFattrENtryINQUITE....c..oociiiiiiiiiieiieiete ettt sttt ettt et s e ne s bt e sbe b e e ae et e eaeeneenne et ennenaee 18
321 EXAMPLE(S) eterteeuteiiieiieeette ettt ettt ettt sttt e s at e e bt e e ht e e bt e e at e e bt e s a bt e bt e sht e e bt e bt e bt e eat e e bt e shbeeabeeshteebeenaees 19
I B O D) 25 i1 4 €] APPSR 20
3301 EXAMPLE(S) teerteeutieiteiieeite ettt et ettt ettt et e s at e e bt e e bt e bt e s at e e bt e s a bt e bt e sh bt e bt e bt e e bt e e ab e e bt e shbeeabeeshteebeenaees 20
34 CDFAtIINQUITEooutieiiiiieieiieeeeete ettt ettt ettt et e et et a e eaeesae e s e s bt esnesbe e s eese et e eaeemneenne st ennenaee 21
I B 25 €101 o) (=T) F OO OO OO SO OO O PP PR T PRSP 22
3.5 CDFAIINUIN ..cciiieeiieeeitteeiee et e ettt e et ee ettt e eestaeesssaeeessseeeassaeeasssaeassseeansseeessaeeasssaeassseeensssaesnsseeansseeenssaeesnseeenns 22
351 EXAMPLE(S) eterteeuiieiieiieeitte ettt et ettt ettt et e s at e e bt e e at e e bt e e at e e bt e s a b e e bt e sh bt e bt e bt e e bt e eab e e bt e shbeeabeeshteebaenaees 23
3.0 CDFAMIPUL.....coiiiiieiiiieeete ettt e et e e et e e e e taeeetbee e ssaeeassaaeessseeasssaeeassseesssseeansseeeasssaesnsseeenssaesnssaeesnsaeanns 23
3.0 1 EXAMPLE(S) eeerteeutiiiieiieeite ettt et ettt et sttt e st e bt e sht e e bt e e a b e e bt e s a bt e bt e s ht e e bt e bt e e bt e e ab e e bt e sabeeabeeshteebeenaees 24
3.7 CDFAIRENAMEc.eviiieiiieiiie ettt eeite e ettt e et e e ettt e staeeetbeaesssaeessssaeassseeasssaeesssaeesssseeassseeenssseesnsseeessseesnsseeessseeans 25
371 EXAMPLE(S) etetteeutiiiieiieeite ettt ettt ettt st et esat e e bt e sate e bt e e ate e b e e s ab e et e e sh bt e bt e bt e e bt e eabe e bt e shbeeabeeshteebeenaees 25
IR T O B) 211 [o T USRS 25
381 EXAMPLE(S) -eeeurteeutieiieiteeite ettt ettt ettt sttt e s at e e bt e s at e e bt e e a bt e bt e s a bt e bt e s ht e e bt e bt e e bt e e at e e bt e shbeeabeeshteebeenaees 26
3.9 CDFCIEALEeeeeveeeiiieeeitteetee e tee e ettt e etaee e tbeeeassaeesssaeaassseaassaeaasssaeassseeanssaeeassaeeasssesanssaeesssaesnsseeanssaesnssaeesnseanans 26
391 EXAMPLE(S) veeutteeuteeieeiieeitte sttt ettt rh e sttt e st et e sat e e bt e sate e bt e e at e e bt e s a bt e bt e s ht e e bt e bt e e bt e eht e e beesabeeabeeshteebeenaees 27

I8 (I O B) 31¢ =) (<1 RRUOPOTRRRRRRRRY 28

301 EXAMPIE(S) teuvteeureeiieiieiite sttt ettt ettt st et e st e b e e s at e e bt e s ate e bt e s abe e bt e s ht e e bt e bt e e bt e e at e e bt e sabeeabeeshteebeenaees 28

0 R O B) 21 1o T PRSI US 28
BUT.1 EXAMPIE(S) ceurteeuteeiieiieeitteeite ettt ettt ettt sttt e st e b e e s a et e bt e s at e e bt e s ab e e bt e sht e e bt e bt e e bt e e ab e e bt e sabeeabeeshteebeenaees 29
I B Ol D) S1C 4 (o) USRS 29
I8 D28 B 25 € 1101 5) (51) F OO OO O OO OO O PP PROPPTUPRRPRO 30
3.13 CDFZEtCRECKSUML. ...ttt ettt ettt ettt ettt et st a e e s ae e e s bt e e sbe et e saeenn e eneeneenne st ennenaee 30
I8 BT B 25 € 1101 5) (ST) PO OO OO U PP PRUPTUPSORTROP 30
3.14 CDFZEtFIleBaCKWAIccuioiiiiiiiiiiiieit ettt st st e st n e eanesaeennenaee 31
I8 L B 25 € 1015 (51) OO OO O OO U PO PRSPPTOPSORPROP 31
315 CDEFZEtVALIAALEeeeenieiieiieiieieete ettt ettt ettt et st e s et e ne s bt e sbe b e s ae et e eaeeneeanenaeennenaee 31
I8 TSI B 25 € 101 5) (51) F OO OO OO SRR PP P T PTUPSRRPROP 32
3.10 CDFINQUITE ..ottt ettt ettt ettt ettt et e et e et eae e et eae e st e e e saeesnesbeessesbeeaneeseemseeneesteeanesseennenaee 32
316.1 EXAIMPIE(S) ceuveeeureeiieiiieiiteeite ettt ettt ettt sttt e sttt e e at e e bt e e ate e bt e s a bt e bt e sht e e bt e bt e e bt e e a b e e bt e sh b e et e e shteebeenaees 33
BT CDFOPEMN......ciuiiiieiietetet ettt et sttt et ettt et sttt eae e et et a e et s ae e bt e h e h et eae et eanesae e nae 33
I8 A B 25 € 1101 5) (51) PO OO OO OO OO POPOTUPR TSRO 34
RN B B O D) S) s 1Te] €] ' NSRS 34
I8 B30 B 25 € 1101 5] (51) PO OO OO PR TP UPSRRPROP 34
3.19 CDFSEtFIIEBACKWALGcccuviiiiiiieeiiieciie ettt et e et e e s taee e tbeeessbeeeessaaesssseeesssesessseeesnsseeessseesassaeesnseeanns 35
3101 EXAIMPIE(S) ceuvteeureeiieiieeite ettt ettt ettt st et e sttt e s at e e bt e sate e bt e s ab e e bt e sht e e bt e bt e e bt e e at e e bt e sabeeabeeshteebeenaees 35
I I O D) S Y 1 1 B 1 PR PRTUSN 36
3.20.1 EXAIMPIE(S) teuveeeutieiteiieeite ittt ettt et sttt e st e b e e a e e b e e e a bt bt s a bt e bt e s ht e e bt e bt e e bt e eht e e bt e shb e et e e shteebeenaees 36
I B O D) 7 1 4 O o1 USRS 36
IV 0 B 25 € 1101 5] (51) PO OO OO OO SRRSO PR PRSP 37
322 CDFVAICT@ALEcccuvieeeirieeiieeesteeeetteeetvee e tbteeassaeessseaaseseaaassaeeasssaeassseeasseeeassseessssesassseseassseesnsseeensseesnssaeessssennns 37
3221 EXAIMPIE(S) ceuvteeuteeieeiieeite ettt ettt ettt et st ettt e b e ettt e b e e a bt e bt e st e bt s ht e e bt e bt e e bt e e at e e bt e shbe et e e shteebeenaees 38
IV B O D) 7 1 €] APPSR 39
RIVC TN B 25 € 1101 5) (51) F OO OO P TP PTOPSRRPRO 39
324 CDEFVHPGEL ...ttt ettt et st et et et e s ae e s bt e st e ettt e na e nae 40
K IV2Z 8 B 25 € 1101 5) (ST) OO OO O OO OSSP P TP PTUPSORPROP 40
325 CDEFVHPPUL ..ottt ettt et et e s et e s bt e s bttt ettt e na e naee 41
3251 EXAIMPIE(S) teuvteeuteetieiieeite ettt ettt ettt ettt e b e a e e bt e e at e e bt s a bt e bt e s ht e e bt e bt e e bt e e ht e e bt e sabeeabeeshteebeenaees 41
3.20 CDFVAIINQUITE....c..iouieiieiieiieiiieete ettt ettt ettt et sae st e a e e s et e s e s bt essesbe e s e eae et e eaeeneeane st ennenaee 42
3.260.1 EXAIMPIE(S) ceuvteeutiiiieiieeiteiiie ettt ettt ettt ettt e b e e h e e b e e at e e bt e st e et s h bt e bt e bt e e bt e eht e e bt e shbeeabeeshteebeenaees 43
I B Ol D) a7 10 N1 1§ 1 USRS 43
3271 EXAIMPIE(S) ceurteeuteetieiteiite ettt ettt et sttt e st e be e e at e e bt e e at e e bt e s a bt e bt e sht e e bt e bt e bt e e ht e et e e shbeeabeeshbeebeenaees 44
I B Ol D) 7 1 o1 PR US 44
3281 EXAIMPIE(S) ceuveeeuteeiieiieeiteeite ettt ettt ettt ettt e b e e a e e bt e e a e e bt st e bt e s at e bt e bt e e bt e e ab e e bt e shbeeabeeshteebeenaees 45
3.29 CDFVAIRENAIMEvviieiiiieiiiie ettt ettt e et e et e e ettt e s taeeeebeeesssaeeassaaeassseeasssaeesssaaesssseeassseeeasssaesnsseeessseeenssaeesnsseenns 45
RIVAS T B 25 € 1101 5) (51 () F OO OO OSSO P PO P PP PTUPRRPPO 46

4 Internal INterface = CDFLD ...ioieeeceereeeceeeeeneccereeeeeccsseseecsesssesecssssssessssssesssesees 47

T T 25 €111 o) (=T) OO OO OO OO O PO OO SUUPRPRTUPRRRN 47
4.2 Current ObJectS/StAtes (IEEIMNS) ...eerueiruriiriierieeitie ettt ettt et et b ettt e bt e st e e satesabeesbeeeabeesbeesabeesbeesabeesanesaneens 49
4.3 REUINEA STATUS ...ouveiitiiieiiiiieteettete ettt ettt ettt ettt et e st e st et e et e e st e st eaee st eaeesaeeane s st eanesbeennesseennesseensene 52
4.4 INAENTAION/SEYIEcouiiiiiiiiiieiieec ettt ettt ettt ettt et ettt st a e e a et eane bt e b e b esnesae et eae 53
A5 SYNTAX ceeiitiiiiiiiiiee ettt ettt ettt e h e bbbttt et ese e et e et eae e a e e e na e e ne bt e s e s bt e b e bt enneeteenteene 53
4.0 OPLIALIONS. . c.eerueeniieiieiteiteeteet et et ettt ettt e et e st e e e e s bt e s e s bt ease bt eas e et e eas e et e ese e eae e st eaee st eaeenaeeane bt e s e she e b e beenneereenteene 54
4T MOTE EXAMPIES ...ttt et ettt et st st st s h e e b et saeennenae 109
471 1Variable CIEAtIONccceiviieiiiieiiiteieeeee ettt ettt ettt et e st e et st e b e sae e beees et e e s e bt easesbeesneeneennenaee 109
472 zVariable Creation (Character Data TYPE)cccuevuieeeriiriinieiiniteientete ettt 110
473 Hyper Read with SUDSAMPIINGco.eoiiiiiiiiiiiiiiiiie et 110
474 Atribute RENAMING ...coooiiiiiiiiiiieicreeceeee ettt ettt sttt et sbe e s e 111
475 SeQUENTIAL ACCESS ..couvieuiiniieiiiiieiteitete ettt ettt ettt ettt ettt e s et e b sae e s e san e b e ees et e e s et easeeneenneeneennenae 112
47.6 ArIDULE TENIIY WIIEES ..oueiiiiiiiiiiiteicietce ettt ettt sttt e sae e saeenne e 112

4777 Multiple ZVariable WIILE......c..ccciiiiiiiiiiiiiieeeeee ettt sttt e ae e s esne e 113

4.8

A Potential Mistake We Don't Want YOU t0 MaAKEccooouueiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeaae et e e e e e e 114

S Interpreting CDF Status Codescceeiiccesvrsnneeccssssssannsecssssssssssssssssssssssssssssss 115

6 EPOCH Utility ROULINES ...cuvveeeeiccsssssnneeccssssssnsseccsssenss 117

6.1
6.2
6.3
64
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

COMPULEEPOCHooiiiiiiiiiii ettt sttt b et sae e saeenesae 117
EPOCHDICAKAOWIeeeiiieiiiiiec ettt ettt e e et e e e e et e e e e e eetaaeeeeeeeasaeeeeeeasaaeeeeeeassaseeeeeesrseeeeeessnreeeens 118
ENCOACEPOCHooiiiiieee e et e e et e e e e e e taa e e e e eetttaeeeeeeseataaeeeeeetaaeeeeeentaseeesenanreeeeeans 118
ENCOACEPOCHLoviiiiieee e et e et e e e et e e e e e eettaa e e e e e esataeeeeeeetaaeeeeeentsseeesenanreeeeeans 119
ENCOACEPOCHZ ...ttt e e et e e e e e et a e e e e eettaaeeeeeeseataeeeeeeetsseeeeeenatsseeesensanreeeeeaas 119
ENCOAECEPOCHS ... et e e ettt e e e e e et a e e e e eeetaaeeeeeesttaeeeeeeetsaeeeeeeatsseeesenanreeeeeanns 119
ENCOACEPOCHY ...ttt e ettt e e e e et taa e e e e eettaaeeeeeeeeataeeeeeeebsaeeeeeenasseeeesenanreeeeenns 119
ENCOUCEPOCHXuviiiiiiiieee ettt e e ettt e e e ettt e e e e et taaeeeeeeeaaseeeeeeaataeeeeeeetrseeeeeentsseeesennanreeeeeanns 120
PATSEEPOCH ...ttt ettt ettt et a et sae e saeeae st n e et neean et eas 121
PATSEEPOCHL ...ttt ettt et e st st s e b ettt e aeenne e 121
PATSEEPOCH2 ...ttt ettt et et et st st b e ae e e 121
PATSEEPOCH3 ...ttt ettt et e st st sttt a e 121
PATSEEPOCHY ...ttt ettt et a e st st s b ettt e ae e e 122
COMPULEEPOCHLO ...ttt ettt e st s st e ae e eae e 122
EPOCHIODIEAKAOWILvvviiieieeiiiiee ettt eeeee e e e e ettt e e e e e ettt e e e e eseataaeeeeeetaaeeeeeeestsseeesensrreeeeeensseeeens 122
ENCOAECEP O CHLOoooiiiiiiiee et e et e e e e ettt e e e e e e eata e e e e e eetaaeeeeeeettraeeeeeetrreeeeeenanseeeeas 123
1S i TeteTe (=) 23 S0 103 5 1 K TN 123
1S i TeTe T =) 23 S0 103 5 1 K T S 123
1S i TeTe T (=) 23 S0 103 5 1 K T S 123
1S i TeTe T =) 23 S0 103 5 1 K T 124
1S i TeTeTe =) 23 S0 103 5 1 K T S 124
PATSEEPOCHIO......oouiiiiiiiiie ettt et et e st st b e s bt e ettt ennesae e sae 125
PATSEEPOCH IO ...ttt ettt et b e et e bt st e s bt e sat e e s bt e eabe e s bt e sabeebeesabeebeenates 125
PATSEEPOCH IO 2.ttt sttt b e e bt e bt s bt e s bt e sa bt e s bt e e bt e bt e sabeebeesateebeenats 126
PATSEEPOCH IO _3 ...ttt b ettt h e e bt e bt st e s bt e sate e s bt e eabe e beesabeebeesabeebeenates 126
PATSEEPOCH IO 4.ttt et b e e bt e b e st e s bt e sa bt e bteeabe e s bt e st e ebeesabeenbeenates 126

7 TT2000 Utility ROULINES ..ccocvvnnriecssssssnnneccssssssnnseccssssnsssasssssssssssssssssssssssassssssanns 127

7.1
7.2
7.3
74
7.5

COMPULETT2000oouiiiiiieiiiieie ettt ettt ettt et et e et st e bt st e s sas e b e sase b e eane b e esnesaeenneeneennenaee 127
TT2000DIEAKAOWIceteniieiriiieiiietiete ettt ettt ettt et s e sttt eae et e et et e eaeesae e e e saeesnesaeennesaeennessnennesanenseens 128
€NCOAETT2000ooiiieiiiiieiiiiete ettt ettt ettt ettt et sae et st e bt st e aesae e st sa s e b e eas et e e s esse e s esaeennesaeennenaee 128
PATSETT2000c..eoiiiiiieieetee ettt ettt s ettt e et eae et eae e st e s e sae e s e saeennesaeenneste e b e eanenreens 129
1APSECONASINTO ...ttt ettt et st st ae s et b ettt en e ae e nae 129

Chapter 1

1 Compiling

Since Perl is an interpreter language and its scripts are checked for any syntax error during their execution, there are no
separate steps for compilation and linking as other programming languages like C and Fortran.

The Perl-CDF package includes two interfaces: Internal Interface and Standard Interface. The Standard Interface only
covers limited functions that deal mainly with the older rVariables and their attributes in the CDF. This interface is
mirrored the original functions that are covered in the C’s Standard Interface. The Internal Interface, based on the C’s
Internal Interface, provides a complete suite of CDF functionality.

1.1 How to use the Perl-CDF package

In order to use either one or both interfaces from any Perl script, the search path for the Perl-CDF package must be set
up properly. In addition, the Perl-CDF package needs to be imported as well prior to using the either CDF interface.
There are two ways to define the search path for the Perl-CDF package. One way is to include the location of the Perl-
CDF package at the beginning of a Perl script. The following code illustrates how to define a Perl-CDF package that is
installed under /home/cdf/PerlCDF32:

use strict;

BEGIN { unshift @INC,'/home/cdf/Perl CDF32/blib/arch',
'/home/cdf/Perl CDF32/blib/lib'; }

use CDF; # Import the CDF module - optional

The other way is to define the location of the Perl-CDF package at the command line when invoking the Perl script.
The following command is equivalent to the above example:

perl -I/home/cdf/PerlCDF32/blib/arch -I/home/cdf/PerlCDF32/blib/lib <perl script name>

Since the Perl CDF interface uses the shared CDF library, the user has to tell the operating system where to find the
shared library. For Linux, DEC Alpha/OSF1, Sun Solaris or SGI, the environment variable LD_LIBRARY_PATH
must be set to point to the directory that contains the shared CDF library, libedf.so. For example, if the shared CDF
library is installed under /usr/local/share/cdf32/1ib and you are using the C-shell, enter:

setenv LD LIBRARY PATH /usr/local/share/cdf32/1ib

For HP-UX, the shared library is libedf.sl. For IBM RS6000, the library is libcdf.o.

For BSD-based Mac OS X, the environment variable is DYLD_LIBRARY_PATH that must be set to point to the
directory containing the shared library libedf.dylib.

For Windows 9x/NT/2000/XP, similarly, set the PATH variable to point to the directory that contains dlledf.dll.
Two Perl test scripts, testPerlCDFii.pl and testPerlCDFsi.pl, are provided in the distribution. Both use extensive

Perl-CDF interface functions: testPerlCDFii.pl tests CDF's Internal Interface functions while testPerlCDFsi.pl tests the
Standard Interface functions. They can be used as sample scripts for development.

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the Perl programming interface for CDF applications. These include
the constants that are available to CDF applications written in Perl. These constants are defined in the Perl-CDF
package.

Unlike other programming languages (e.g. C, Fortran, Java, etc.), Perl only has three basic data types: scalars, arrays of
scalars and hashes of scalars. No other defined data types are needed for any of the Perl-CDF operation items.

For Perl applications, all CDF items are referenced starting at zero (0). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at zero (0).

2.2 Passing Arguments

For calling Perl-CDF APIs, the arguments are passed by values or references, based on the input or output operation.
The general rules for passing the arguments to APIs are:

Input Normally, for a scalar argument, it is passed by value', e.g., $format, if it is sending
information to the CDF for an operation (e.g. setting the CDF file format, data type, variable
name, compression method, etc.). However, if the scalar is passed in as a data value?, it is
required by design that it be passed by reference, .e.g., \$dataValue, \$padValue,
\$entryData, etc. For an argument requiring an array, no matter how many elements in the
array, it is always passed by reference, e.g., \@indices.

Output The argument is passed by reference, e.g., \$format for a scalar or \@indices for an array, if
the argument(s) in an operation is to acquire information from the CDF.

' The scalar data can be interpreted properly into an integer (of data type long in C) by the CDF library for a non-string
data. A string is also a valid scalar data.

* A data value is referred as a variable’s record data or padded data, or a global or variable attribute’s entry data. Its
value will be interpreted based upon its data type when the variable or entry is created.

Refer to the two test Perl scripts mentioned above for example. Since Perl doesn’t do type checking, it’s application
developer’s responsibility to ensure that proper arguments are being used. For example, an integer data should be
passed to an operation that writes the data value to a CDF variable that is defined as CDF_INT4 or CDF_INT2.

2.3 CDF Status Constants

All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum, CDFgetAttrNum, CDFgetFileBackward and
CDFgetChecksum functions, return a status code indicating the completion status of the function. The CDFerror
function can be used to inquire the meaning of the status code. Appendix A lists the possible status codes along with
their explanations. Chapter 5 describes how to interpret status codes.

CDF_OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 5 describes how to use these constants to interpret status codes.

2.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF_INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF _UINTI1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.

CDF_UINT4 4-byte, unsigned integer.

CDF_INT8 8-byte, signed integer.

CDF _REALA4 4-byte, floating point.

CDF_FLOAT 4-byte, floating point.

CDF _REALS 8-byte, floating point.

CDF _DOUBLE 8-byte, floating point.

CDF_EPOCH 8-byte, floating point.

CDF_EPOCH16 two 8-byte, floating point.

CDF TIME TT2000 8-byte, signed integer.

CDF CHAR and CDF _UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

2.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK _ENCODING Indicates network transportable data representation (XDR).

VAX ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSd _ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D _FLOAT
representation.

ALPHAVMSg ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

ALPHAOSF1 ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING
SGi ENCODING

DECSTATION_ENCODING

IBMRS_ENCODING
HP_ENCODING
PC_ENCODING
NeXT_ENCODING

MAC_ENCODING

Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).
Indicates PC data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST _ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST ENCODING is never returned.)

2.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G FLOAT
representation.

ALPHAVMSi DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1 DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_ DECODING Indicates Silicon Graphics Iris and Power Series data representation.
DECSTATION_DECODING Indicates DECstation data representation.

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).
HP_DECODING Indicates HP data representation (HP 9000 series).
PC_DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC _DECODING Indicates Macintosh data representation.

The default decoding is HOST DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT ,CDF DECODING > operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST DECODING may be desired.

2.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY

NOVARY

True record or dimension variance.

False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the

same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available compression types, GZIP provides the best result.

NO COMPRESSION

RLE COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING_TREES.

Gnu's “zip" compression.” There is one parameter.
1. The level of compression. This may range from 1 to 9. 1 provides the

least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between

? Disabled for PC running 16-bit DOS/Windows 3.x.

2.11 Sparseness

2.11.1 Sparse Records

provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

The following types of sparse records for variables are supported.

NO_SPARSERECORDS

PAD SPARSERECORDS

PREV_SPARSERECORDS

2.11.2 Sparse Arrays

No sparse records.

Sparse records - the variable's pad value is used when reading values from
a missing record.

Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

The following types of sparse arrays for variables are supported.*

NO_SPARSEARRAYS

2.12 Attribute Scopes

No sparse arrays.

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the

CDF toolkit).

GLOBAL_SCOPE

VARIABLE SCOPE

2.13 Read-Only Modes

Indicates that an attribute's scope is global (applies to the CDF as a
whole).

Indicates that an attribute's scope is by variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

* The sparse arrays are not supported and will not be implemented.

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT ,CDF READONLY MODE > operation. When read-only mode is set, all metadata is read into memory
for future reference. This improves overall metadata access performance but is extra overhead if metadata is not
needed. Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same
session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

2.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT ,CDF_zMODE > operation.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

2.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF NEGtoPOS{p0 MODE > operation.

NEGtoPOS{pOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOS{pOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on

the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

10

2.17 Limits of Names and Other Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name (excluding the NUL® terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on OpenVMS systems and environment variables on UNIX

systems).
CDF_VAR NAME LEN256 Maximum length of a variable name (excluding the NUL terminator).
CDF_ATTR NAME LEN256 Maximum length of an attribute name (excluding the NUL terminator).
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text (excluding the NUL
terminator).
CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code (excluding the

NUL terminator).

2.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.%, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new Perl script,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreate). This function takes an argument to control the backward file compatibility. Passing a flag
value of BACKWARDFILEon, also defined in the Perl-CDF package, to the function will cause new files to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the
maximum file is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation
mode and new files created will not be backward compatible with older libraries. The created files are of version 3.*
and thus their file sizes can be greater than 2G bytes. Not calling this function has the same effect of calling the
function with an argument value of BACKWARDFILEoff.

The following example create two CDF files: “MY_ TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

my $idl, $id2; # CDF identifier.

my $status; # Returned status code.
my $numDims = 0; # Number of dimensions.
my @dimSizes=(0); # Dimension sizes.

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
NULL);

5 The ASCII null character, 0x0.

11

UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

CDF::CDFsetFileBackward(BACKWARDFILEon);

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST2”, $numDims, \@dimSizes, \$id2,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDFSFILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward script to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

my $status; # Returned status code.
my $flag; # File backward flag.

$flag = CDF::CDFgetFileBackward();

2.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open; and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: 0 for NO_CHECKSUM and 1 for MD5_CHECKSUM, both defined in cdf.h. With MD5 CHECKSUM, the
MD5 algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the
checksum bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the
environment variable method only allows to set the checksum mode for new files.

12

See Section 3.13 and 3.18 for the Standards Interface functions and Section 4.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable CDF_CHECKSUM on all Unix platforms and Windows, or
CDF$CHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF
files will have their checksum bit set with a signature message produced by the MDS5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set a new CDF file with the MDS5 checksum and set another
existing file’s checksum to none.

my $idl, $id2;

my $status;

my $numDims = 0;
my @dimSizes = (0);
my $checksum;

CDF identifier.
Returned status code.
Number of dimensions.
Dimension sizes.
Checksum code.

H HHHH®

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
NULL_);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

$checksum = 1;

$status = CDF::CDFlib (SELECT , CDF , $idl,
PUT_, CDF_CHECKSUM , $checksum,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

$status = CDF::CDFlib (OPEN_, CDF_, “MY_TEST2”, \$id2,
NULL);
UserStatusHandler ("3.0", $status) if ($status < CDF_OK) ;

$checksum = 0;

$status = CDF::CDFlib (SELECT , CDF , $id2,
PUT_, CDF_CHECKSUM , $checksum,
NULL);

UserStatusHandler ("4.0", $status) if ($status < CDF_OK) ;

Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.

The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.

my $id; # CDF identifier.
my $status; # Returned status code.
my $checksum; # Checksum code.

13

$status = CDF::CDFlib (OPEN_, CDF , “MY_TEST1”, \$id,
NULL);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

$status = CDF::CDFlib (SELECT , CDF , $id,
GET_, CDF_CHECKSUM , \$checksum,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

if ($checksum == MD5_CHECKSUM) {

H
Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.

2.20 Data Validation

To ensure the data integrity from CDF files and secure opetating of CDF-based applications, a data validaion feature is
added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF
internal data structures to make sure that the values are within ranges and consistnent with the defined
values/types/entries. It also tries to ensure that the linked lists.within the file that connect the attributes and variables are
not broken or short-circuited. Any compromised CDF files, if not validated properly, could cause applications to
function unexpectedly, e.g., segmentation fault due to a buffer overflow. The main purpose of this feature is to safe-
guard the CDF operations: catch any bad data in the file and end the application gracefully if any bad data is identified.
An overhead (performance hit) is expected and it may be noticeable for large or very fragmented files. Therefore, it is
advised that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may need
a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide. °

This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all
open CDF files are subjected to this data validation process. If the environment variable is set to “ne”, then no
validation is perfomed. The environment variable can be set at logon or through command line, which becomes in
effective during terminal session, or by an application, which is good only while the application is run. Setting the
environment variable, subroutine CDFsetValidate, at application level will overwrite the setup from the command
line. The validation is set to be on when value 1 (one) is passed into as the argument. Value 0 (zero) will set off the
validation. CDFgetValidate will return the validation mode, 1 (one) means data being validated, o (zero) otherwise.
If the environment variable is not set, the default is to have the data validated when a CDF file is open.

The following example sets the data validation off when the CDF file, “TEST”, is open.
my $id; ; # CDF identifier.
my $status; # Returned status code.

CDF::CDFsetValidate(0);
$status = CDF::CDFlib (OPEN _, CDF _, “TEST”, \$id,

% The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

14

NULL);
UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

2.21 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME TT2000 use 8-byes signed integer. Tests show that on the 32-bit Perl
environment, large values from these data types, especially common 18-digits values for TT2000 data type, will not be
precisely preserved. In oder to preserve the data values, the Math::BigInt module is used.for these types. When a data
of such types is returned by a CDF module, it is wraped into a Biglnt object. Similarly, passing a value of these types, it
should also be in Biglnt object.

The following example shows the difference between a Biglnt object and a regular value from CDF _TIME TT2000
data type after it is encoded on a 32-bit Perl.

use Math::Biglnt;

BEGIN { unshift @INC,'/Users/cdf/PerlCDF33_2/blib/arch',
'/Users/cdf/PerlCDF33 2/blib/lib'; }
use CDF;

my $ttb = Math::BigInt->new('340203790171876765");
my $ttr = 340203790171876765;

my ($tt2000b, $tt2000r);

CDF::encodeTT2000($ttb, $tt2000b);
CDF::encodeTT2000($ttr, $tt2000r);

print $tt2000b,"(bigint) vs ",$tt2000r,"(regular) \n";

2010-10-13T01:02:03.987876765(bigint) vs 2010-10-13T01:02:03.987876736(regular)

15

Chapter 3

3 Standard Interface

The Standard Interface functions described in this chapter represents the Standard Interface functions. They are based
on the original Standard Interface developed for the C. This set of interfaces only provides a very limited functionality
within the CDF library. For example, it can not handle zVariables and has no access to attribute’s entry corresponding
to the zVariables (zEntries). If you want to create or access zVariables and zEntries, or operate any single item not
accessible from the Standard Interface in a CDF file, you must use the Internal Interface described in Chapter 4.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
it’s not as efficient as Internal Interface and can only create and maipulate rVariables, not zVariables. If you are not
familiar with Internal Interface and need a very simple CDF in a short time, the use of Standard Interface is
recommended. However, the Internal Interface (see Chapter 4 for details) is strongly recommended since it’s not really
hard to learn (see testPerlCDFii.pl included in the Perl-CDF package) and much more flexible and powerful than the
Standard Interface.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the Standard Interface functions callable from Perl applications. Most functions return
a status code (see Chapter 5). The Internal Interface is described in Chapter 4. An application can use either or both
interfaces when necessary.

3.1 CDFattrCreate

CDF::CDFattrCreate(
my id,

my $attrName,

my S$attrScope,

my \$attrNum);

out -- Completion status code.
in -- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

out -- Attribute number.

H o H H

17

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

3.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

CDF identifier.

Returned status code.
Name of "Units" attribute.
"Units" attribute number.
"TITLE" attribute number.
"TITLE" attribute scope.

my $id;

my $status;

my S$UNITSattrName = "Units";

my $UNITSattrNum;

my S$STITLEattrNum;

my S$TITLEattrScope = GLOBAL SCOPE;

$status = CDF::CDFattrCreate ($id, "TITLE", $TITLEattrScope, \$TITLEattrNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrCreate ($id, SUNITSattrName, VARIABLE SCOPE, \$UNITSattrnum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.2 CDFattrEntrylnquire

CDF::CDFattrEntryInquire(
my $id,

my $attrNum,

my $entryNum,

my \$dataType,

my \$numElements);

out -- Completion status code.

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).

HHHFHHH

18

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrlnquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntrylnquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

3.2.1

Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 3.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 2.5.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH _ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

my
my
my
my
my
my
my
my
my

$id;

$status;
$attrN;
$entryN;
$attrName;
$attrScope;
$maxEntry;
$dataType;
$numElems;

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum entry number used.

Data type.

Number of elements (of the data type).

HoH o H H H H HH®

$attrN = CDF::CDFgetAttrNum ($id, "TMP");

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrinquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

for ($entryN = 0; $entryN <= $maxEntry; SentryN++) {

$status = CDF::CDFattrEntryInquire ($id, $attrN, $entryN, \$dataType, \$numElems);

19

if ($status < CDF_OK) {
if ($status = NO_SUCH_ENTRY) UserStatusHandler (“3.0”. $status);

}

else {

process entries

-~

3.3 CDFattrGet

CDF::CDFattrGet(
my $id,

my $attrNum,

my $entryNum,
my \$value);

out -- Completion status code.
in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Attribute entry value.

H o H H

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id

attrNum

entryNum

value

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

The attribute number. This number may be determined with a call to CDFattrNum (Section
3.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed in the variable
value.

3.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF CHAR or CDF_UCHAR) for attribute entries (or variable values).

my $id;

CDF identifier.

20

my $status;

my $attrN;

my S$entryN;
my $dataType;
my S$numElems;
my S$buffer;

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).
Buffer to receive value.

H o H H H FH

$attrN = CDF::CDFattrNum (id, "UNITS");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$entryN = CDF::CDFvarNum (id, "PRES LVL"); # The rEntry number is the rVariable number.

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrEntryInquire ($id, $attrN, $entryN, \$dataType, \$numElems);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

if ($dataType == CDF CHAR) {
$status = CDF::CDFattrGet ($id, $attrN, $entryN, \$buffer);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

print "Units of PRES LVL variable: $buffer \n";

H

3.4 CDFattrInquire

CDF::CDFattrInquire(
my $id,

my $attrNum,

my \$attrName,

my \$attrScope,

my \$maxEntry);

out -- Completion status code.

in -- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry or rEntry number.

HoH HHHH®

CDFattrinquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use

CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id

attrNum

attrName
attrScope

maxEntry

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 3.5).

The attribute's name.
The scope of the attribute. Attribute scopes are defined in Section 2.12.
For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be

21

inquired with the CDFlib function (see Section 4). If no entries exist for the attribute, then
a value of -1 will be passed back.

34.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

my $id; # CDF identifier.

my $status; # Returned status code.

my S$numDims; # Number of dimensions.

my @dimSizes = (CDF_MAX DIMS); # Dimension sizes (allocate to allow the maximum
number of dimensions).

my $encoding; # Data encoding.

my $majority; # Variable majority.

my $maxRec; # Maximum record number in CDF.

my S$numVars; # Number of variables in CDF.

my S$numAttrs; # Number of attributes in CDF.

my $attrN; # attribute number.

my S$attrName; # attribute name -- +1 for NUL terminator.

my S$attrScope; # attribute scope.

my $maxEntry; # Maximum entry number.

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,
\$maxRec, \$numVars, \$SnumAttrs);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
for ($attrN = 0; $attrN < $numAttrs; $attrN++) {
$status = CDFattrinquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
if ($status < CDF_OK) # INFO status codes ignored.
UserStatusHandler (“2.0”, $status);
else
print ("$attrName \n”);

-~

3.5 CDFattrNum

CDF:: CDFattrNum(# out -- Attribute number.
my $id, # in-- CDF id
my $attrName); # in -- Attribute name

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code is returned. Error codes are less than zero (0).

22

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrName The name of the attribute for which to search. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

3.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

my $id; # CDF identifier.
my $status; # Returned status code.
my S$attrNum; # Attribute number.

$attrNum = CDF::CDFattrNum($id,"pressure");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "PRESSURE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.6 CDFattrPut

CDF::CDFattrPut(
my $id,

my $attrNum,

my $entryNum,
my $dataType,
my $numElements,
my $value);

out -- Completion status code.

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

H HHFHFEHHH

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when
overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

23

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the

rEntry).

dataType The data type of the specified entry. Specify one of the data types defined in Section
2.5.

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address
value.

3.6.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

CDF identifier.

Returned status code.

Entry number.

Number of elements (of data type).

Value of TITLE attribute, entry number 0.

Value(s) of VALIDs attribute, rEntry for rVariable TMP.
Length of CDF title.

Attribute number.

rVariable number.

my $id;

my $status;

my $entryNum;

my S$numElements;

my $title ="CDF title.";

my @TMPvalids = (15,30);
my STITLE_LEN = 10;

my S$attrNum;

my S$varNum;

H o H H H H H H H

$entryNum = 0;

$attrNum = CDF:: CDFgetAttrNum(id,"TITLE");

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrPut ($id, $attrNum, $entryNum, CDF_CHAR, 10, $title);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$numElements = 2;

$attrNum = CDF:: CDFgetAttrNum(id,"VALIDs");

UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);

$varNum = CDF:: CDFgetVarNum(id,"TMP");

UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrPut ($id, $attrNum, $varNum, CDF_INT2, $numElements, \@TMPvalids);
UserStatusHandler (“5.0”. $status) if ($status < CDF_OK);

24

3.7 CDFattrRename

CDF::CDFattrRename(
my $id,

my $attrNum,

my $attrName);

out -- Completion status code.
in -- CDF identifier.

in -- Attribute number.

in -- New attribute name.

H o H H*

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrNum The number of the attribute to rename. This number may be determined with a call to

CDFattrNum (see Section 3.5).

attrName The new attribute name. Attribute names are case-sensitive.

3.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

my $id; # CDF identifier.
my $status; # Returned status code.
my S$attrNum; # Attribute number.

$attrNum = CDF:: CDFgetAttrNum(id,"LAT");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "LATITUDE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.8 CDFclose

CDF::CDFclose(# out-- Completion status code.
my $id); # in-- CDF identifier.

25

CDFclose closes the specified CDF. The CDEF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.8.1 Example(s)

The following example will close an open CDF.

my $id; # CDF identifier.
my $status; # Returned status code.

$status = CDF::CDFclose ($id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.9 CDFcreate

CDF::CDFcreate(
my $CDFname,
my $numDims,
my \@dimSizes,
my $encoding,
my $majority,
my \$id);

out -- Completion status code.

in -- CDF file name.

in -- Number of dimensions, rVariables.
in -- Dimension sizes, rVariables.

in -- Data encoding.

in -- Variable majority.

out -- CDF identifier.

H o H H H H

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name

26

numDims

dimSizes

encoding

majority

id

may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.6.

The majority for variable data. Specify one of the majorities described in Section 2.8.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDF1Iib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 3.8).

3.9.1 Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

my $id;
my $status;

my $numDims =
my @dimSizes = (180,360,10);
my S$majority = ROW_MAJOR;

3;

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables.
Variable majority.

H o H H H*

$status = CDF::CDFcreate ("testl", $numDims, \@dimSizes, NETWORK ENCODING, $majority, &id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

ROW_MAIJOR and NETWORK ENCODING are defined in the Perl-CDF package.

27

3.10 CDFdelete

CDF::CDFdelete(# out-- Completion status code.
my id); # in-- CDF identifier.

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.10.1 Example(s)

The following example will open and then delete an existing CDF.

my $id; # CDF identifier.
my $status; # Returned status code.

$status = CDF::CDFopen ("test2", \$id);

if ($status < CDF_OK) # INFO status codes ignored.
UserStatusHandler (“1.0”, $status);

else {
$status = CDF::CDFdelete ($id);

UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
)
s

3.11 CDFdoc

CDF::CDFdoc(
my $id,

my \$version,
my \$release,
my \$Copyright);

out -- Completion status code.
in -- CDF identifier.

out -- Version number.

out -- Release number.

out -- Copyright.

H o H H H*

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

28

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

Copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

3.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

CDF identifier.
Returned status code.
CDF version number.
CDF release number.
Copyright notice.

my $id;

my $status;

my S$version;
my $release;
my $Copyright;

H o H H

$status = CDF::CDFdoc ($id, \$version, \$release, \$Copyright);

if ($status < CDF_OK) # INFO status codes ignored
UserStatusHandler (“1.0”, status);

else {
print ("CDF V§version.$release\n™);
print ("$Copyright”);

)

s

3.12 CDFerror

CDF::CDFerror(# out-- Completion status code.
my $status, # in-- Status code.
my $message); # out-- Explanation text for the status code.

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 5 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:

status The status code to check.

29

message The explanation of the status code.

3.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

my $id; # CDF identifier.
my $status; # Returned status code.
my S$text; # Explanation text.

$status = CDF::CDFopen ("giss_wetl", \$id);
if ($status < CDF_WARN) { # INFO and WARNING codes ignored.
CDF::CDFerror ($status, \$text);

print ("ERROR> $text\n”);
1
5

3.13 CDFgetChecksum

CDF::CDFgetChecksum (# out-- Completion status code.
my $id, # in-- CDF identifier.
my \$checksum); # out-- CDF’s checksum mode.

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.19.

The arguments to CDFgetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

3.13.1 Example(s)

The following example returns the checksum mode for the open CDF file.

my $id; # CDF identifier.
my $status; # Returned status code.
my $checksum; # CDF’s checksum.

30

$status = CDF::CDFgetChecksum ($id, \$checksum);
if ($status = CDF_OK) UserStatusHandler ($status);

3.14 CDFgetFileBackward

CDF::CDFgetFileBackward() # out-- Backward file indicator.

CDFgetFileBackward is used to get the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFgetFileBackward defined as follows:

N/A

3.14.1 Example(s)

In the following example, the backward file indicator is retrieved.

my $backwardFlag; # File backward flag.

$backwardFlag = CDF::CDFgetFileBackward();

3.15 CDFgetValidate

CDF::CDFgetValidate () # out-- Validation mode.

CDFgetValidate returns the validation mode when opening CDF files. The CDF validation mode is described in
Section 2.20.

The arguments to CDFgetValidate are defined as follows:

N/A

31

3.15.1 Example(s)

The following example returns the data validation mode when opening the CDF files.

my $validate; # CDEF’s validation mode.

$validate = CDF::CDFgetValidate ();

3.16 CDFinquire

CDF::CDFinquire(
my $id,

my \$numDims,
my \@dimSizes,
my \$encoding,
my \$majority,
my \$maxRec,
my \$numVars,
my \$numAttrs);

out -- Completion status code.

in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number in the CDF, rVariables.
out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

H o H H H H H H H

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.

dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.6.

majority The majority of the variable data. The majorities are defined in Section 2.8.

maxRec The maximum record number written to an rVariable in the CDF. Note that the maximum

record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.

32

Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

numVars The number of rVariables in the CDF.

numAttrs The number of attributes in the CDF.

3.16.1 Example(s)

The following example returns the basic information about a CDF.

CDF identifier.

Returned status code.

Number of dimensions, rVariables.

Dimension sizes, rVariables (allocate to allow the
maximum number of dimensions).

Data encoding.

Variable majority.

Maximum record number, rVariables.

Number of rVariables in CDF.

Number of attributes in CDF.

my $id;

my $status;

my $numDims;

my @dimSizes ;

my S$encoding;
my $majority;
my $maxRec;
my $numVars;
my $numAttrs;

HoH o H H H H H

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,
\$maxRec, \$numVars, \$numAttrs);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.17 CDFopen

CDF::CDFopen(# out-- Completion status code.
my $CDFname, # in-- CDF file name.
my \$id); # out-- CDF identifier.

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:
CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most

CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the

33

operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

3.17.1 Example(s)

The following example will open a CDF named “NOAA1.cdf”.

my $id; # CDF identifier.
my $status; # Returned status code.

my $CDFname ="NOAAI"; # File name of CDF.

$status = CDF::CDFopen ($CDFname, \$id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.18 CDFsetChecksum

CDF::CDFsetChecksum (# out-- Completion status code.
my $id, # in-- CDF identifier.
my $checksum); # in-- CDF’s checksum mode.

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.19.
The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 _CHECKSUM).

3.18.1 Example(s)

The following example turns off the checksum flag for the open CDF file..

34

my $id; # CDF identifier.
my $status; # Returned status code.
my $checksum; # CDF’s checksum.

$checksum= 0;
$status = CDF::CDFsetChecksum ($id, $checksum);
if ($status = CDF_OK) UserStatusHandler ($status);

3.19 CDFsetFileBackward

CDF::CDFsetFileBackward(#
my $flag) # in-- Backward file flag

CDFsetFileBackward is used to set the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFsetFileBackward defined as follows:

flag The backward file flag

3.19.1 Example(s)

In the following example, the backward file indicator is set to true so a new CDF file(s) of V2.7, instead of V3.*, will
be created.

my $backwardFlag; # Backward file flag.

$backwadFlag = 1;
CDF::CDFsetFileBackward($SbackwardFlag);

35

3.20 CDFsetValidate

CDF::CDFsetValidate (
my $validate); # in-- CDEF’s validation mode.

CDFsetValidate specifies the validation mode when opening a CDF file. The CDF validation mode is described in
Section 2.20.

The arguments to CDFsetValidate are defined as follows:

validate The validation mode.

3.20.1 Example(s)

The following example turns on the data validation when opening the CDF file, “TEST”..

my $id; # CDF identifier.
my $status; # Returned status code.

CDF::CDFsetValidate (1);

$status = CDF::CDFIib(OPEN , CDF , “TEST”, \$id,
NULL_);

if ($status = CDF_OK) UserStatusHandler ($status);

3.21 CDFvarClose

CDF::CDFvarClose(# out-- Completion status code.
my $id, # in-- CDF identifier.
my $varNum); # in-- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

36

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

3.21.1 Example(s)

The following example will close an open rVariable in a multi-file CDF.

my $id; # CDF identifier.
my $status; # Returned status code.
my S$varNum; # rVariable number.

$varNum = CDF::CDFvarNum (id, “Flux”);

UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);
$status = CDF::CDFvarClose (id, $varNum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.22 CDFvarCreate

CDF::CDFvarCreate(
my $id,

my $varName,

my $dataType,

my $numElements,
my $recVariance,
my \@dimVariances,
my \$varNum);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

H o H H H H H FH

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.
varName The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256

characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.5.

37

numElements

recVariance

dimVariances

varNum

3.22.1 Example(s)

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.9.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

The following example will create several rVariables in a CDF. In this case EPOCH is a 0-dimensional, LATITUDE
and LONGITUDE are 2-diemnational, and TEMPERATURE is a 1-dimensional.

my $id; # CDF identifier.

my $status; # Returned status code.

my $EPOCHrecVary = VARY; # EPOCH record variance.
my $LATrecVary = NOVARY; # LAT record variance.

my $LONrecVary = NOVARY; # LON record variance.

my $TMPrecVary = VARY; # TMP record variance.

my $EPOCHdimVarys = NOVARY; # EPOCH dimension variances.
my @LATdimVarys = (VARY,VARY); # LAT dimension variances.
my @LONdimVarys = (VARY,VARY); # LON dimension variances.
my @TMPdimVarys = (VARY,VARY); # TMP dimension variances.
my $EPOCHvarNum; # EPOCH zVariable number.
my S$LATvarNum; # LAT zVariable number.

my $LONvarNum; # LON zVariable number.
my TMPvarNum,; # TMP zVariable number.
my @EPOCHdimSizes = (3); # EPOCH dimension sizes.
my @LATLONdimSizes = (2,3); # LAT/LON dimension sizes.
my @TMPdimSizes = (3); # TMP dimension sizes.

$status = CDF::CDFvarCreate ($id, "EPOCH", CDF_EPOCH, 1,
$EPOCHrecVary, \@EPOCHdimVarys, \SEPOCH varNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LATITUDE", CDF INT2, 1,
$LATrecVary, \@LATdimVarys, \$SLATvarNum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LONGITUDE", CDF_INT2, 1,
$LONrecVary, \@LONdimVarys, \$LONvarNum);

UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFvarCreate ($id, "TEMPERATURE", CDF_REALA4, 1,

$TMPrecVary, \@TMPdimVarys, \$TMPvarNum);
UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);

3.23 CDFvarGet

CDF::CDFvarGet(# out-- Completion status code.
my $id, # in-- CDF identifier.

my $varNum, # in-- rVariable number.

my $recNum, # in-- Record number.

my \@indices, # in-- Dimension indices.

my \$value); # out-- Value.

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number from which to read data.

recNum The record number at which to read.

indices The dimension indices within the record.

value The data value read. This buffer must be large enough to hold the value.

3.23.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY VAR, a2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

my $id;

my $varNum;

my $recNum;

my (@indices;

my $valuel, $value2;

H o H H

$varNum = CDF::CDFvarNum ($id, “MY_VAR”);
if (JvarNum < CDF_OK) Quit (“....”);

39

$recNum = 0;
$indices[0] = 0;
$indices[1] = 0;
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$valuel);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$indices[0] = 1L;
$indices[1] = 1L;
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value2);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.24 CDFvHpGet

CDF::CDFvHpGet(

my
my
my
my
my
my
my
my
my

$id,

$varNum,
$recStart,
$recCount,
$reclnterval,
\@indices,
\@counts,
\@intervals,
\@buffer);

HoH o H H HHHHH®

out -- Completion status code.

in --
in --
in --
in --
in --
in --
in --
in --

CDF identifier.

rVariable number.

Starting record number.

Number of records.

Subsampling interval between records.
Dimension indices of starting value.
Number of values along each dimension.
Subsampling intervals along each dimension.

out -- Buffer of values.

CDFvHpGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvHpGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

3.24.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvHpGet rather than numerous calls to

CDFvarGet.
my $id;
my $status;
my @tmp;
my $varN;
my S$recStart = 13;
my $recCount = 1;
my S$reclnterval = 1;
my @indices = (0,0,0);
my @counts = (180,91,10);

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.

HHFHFHHFEHFEHHH

40

my @intervals = (1,1,1); # Dimension intervals.

$varN = CDF::CDFgetVarNum ($id, "Temperature");

if (§varN < CDF_OK) UserStatusHandler ($varN);

status = CDF::CDFgetHyperGet ($id, $varN, $recStart, $recCount, SrecInterval,
\@indices, \@counts, \@intervals, \@tmp);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

3.25 CDFvHpPut

CDF::CDFvHpPut(
my $id,

my $varNum,

my $recStart,

my $recCount,
my $reclnterval,
my \@indices,

my \@counts,

my \@intervals,
my \@buffer);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

in -- Starting record number.

in -- Number of records.

in -- Interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

in -- Interval between values along each dimension.

in -- Buffer of values.

HoH o o H H H H H H

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

3.25.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDvHpPut rather than numerous calls to CDFvarPut.

my $id; # CDF identifier.

my $status; # Returned status code.

my $lat; # Latitude value.

my @lats; # Buffer of latitude values.
my $varN; # rVariable number.

my S$recStart = 0; # Record number.

my S$recCount = 1; # Record counts.

41

my S$reclnterval =

L;

my @indices = (0,0);
my @counts = (1,181); # Dimension counts.

my @intervals =

(1,1);

Record interval.
Dimension indices.

Dimension intervals.

$varN = CDF::CDFvarNum (8$id, "LATITUDE");
if (§varN < CDF_OK) UserStatusHandler ($varN);
for ($lat = -90; $lat <= 90; $lat ++)

$lats[90+lat] =

$lat;

$status = CDF::CDFvHpPut ($id, $varN, S$recStart, $recCount, $recInterval,

\@indices, \@counts, \@intervals, \@lats);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.26 CDFvarlnquire

CDF::CDFvarlnquire(
my $id,

my $varNum,

my $varName,

my \$dataType,

my \$numElements,
my \$recVariance,
my \@dimVariances);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Record variance.

out -- Dimension variances.

H o H H H H H FH

CDFvarlnquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvHpGet) to determine the data type and number of elements (of that data

type).

The arguments to CDFvarlnquire are defined as follows:

id

varNum

varName

dataType

numElements

recVariance

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 3.27).

The rVariable's name. This character string must not be greater than
CDF_VAR NAME LEN256 characters.

The data type of the rVariable. The data types are defined in Section 2.5.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -

multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 2.9.

42

dimVariances The dimension variances. Each element of dimVariances receives the corresponding
dimension variance. The dimension variances are defined in Section 2.9. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

3.26.1 Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

CDF identifier.

Returned status code.

rVariable number.

rVariable name.

Data type of the rVariable.

Number of elements (of data type).
Record variance.

Dimension variances (allocate to allow the
maximum number of dimensions).

my $id;

my $status;

my S$varNum;
my $varName;
my $dataType;
my S$numElems;
my S$recVary;
my @dimVarys;

H o H H H H H H H

$varNum = CDF:: CDFgetVarNum(id,"HEAT FLUX");
UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);
$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType,
\$numElems, \$recVary, \@dimVarys);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.27 CDFvarNum

CDF::CDFvarNum(# out-- Variable number.
my $id, # in-- CDF identifier.
my $varName); # in-- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code is returned. Error codes are less than zero (0). The returned variable
number should be used in the functions of the same variable type, rVariable or zVariable. If it is an rVariable, functions
dealing with rVariables should be used. Similarly, functions for zVariables should be used for zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

43

varName The name of the variable to search. Variable names are case-sensitive.

3.27.1 Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

CDF identifier.

Returned status code.

rVariable number.

Variable name.

Data type of the rVariable.

Number of elements (of the data type).
Record variance.

Dimension variances.

my $id;

my $status;

my S$varNum;

my $varName;

my $dataType;

my S$numElements;
my S$recVariance;
my @dimVariances;

H o H HHHHH

$varNum = CDF:: CDFvarNum(id,"LATITUDE");

UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);

$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType,
\$numElements, \$recVariance, \@dimVariances);

UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarInquire would
be used to determine them. CDFvarlnquire is described in Section 3.26.

3.28 CDFvarPut

CDF::CDFvarPut(
my $id,

my $varNum,
my $recNum,
my \@indices,
my \$value);

out -- Completion status code.
in -- CDF identifier.

in -- rVariable number.

in -- Record number.

in -- Dimension indices.

in -- Value.

H o H HHH®

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

44

varNum The rVariable number to which to write. This number may be determined with a call to

CDFvarNum.
recNum The record number at which to write.
indices The dimension indices within the specified record at which to write. Each element of

indices specifies the corresponding dimension index.

argument is ignored (but must be present).

value The data value to write.

3.28.1 Example(s)

For 0-dimensional variables, this

The following example will write two data values (1% and 5™ elements) of a 2-dimensional rVariable (2 by 3) named

MY _ VAR to record number 0.

my $id;

my S$varNum;

my S$recNum;

my @indices;

my $valuel, $value2;

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

H HHHH®

$varNum = CDF::CDFgetVarNum ($id, “MY_VAR”);
if ($varNum < CDF_OK) Quit (“....”);

$recNum = 0;

$indices[0] = 0;
$indices[1] = 0;
$valuel = 10.1;

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$valuel);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$indices[0] = 1;
$indices[1] = 1;
$value2 = 20.2;

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value2);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.29 CDFvarRename

CDF::CDFvarRename(
my $id,

my $varNum,

my $varName);

out -- Completion status code.
in -- CDF identifier.

in -- rVariable number.

in -- New name.

H H H H

45

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

varName The new rVariable name. The maximum length of the new name is

CDF VAR NAME LEN256 characters (excluding the NUL terminator). Variable names
are case-sensitive.

3.29.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error
code.

my $id; # CDF identifier.
my $status; # Returned status code.
my S$varNum; # rVariable number.

$varNum = CDF::CDFvarNum ($id, "TEMPERATURE");
if (fvarNum <CDF OK) {

if (varNum != NO_SUCH_VAR) UserStatusHandler (varNum);

H

else {
$status = CDF::CDFvarRename ($id, $varNum, "TMP");
if ($status = CDF_OK) UserStatusHandler (status);

46

Chapter 4

4 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFIlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 4.6.
The function prototype for CDFlib is as follows:

status = CDF::CDFlib (function, ...);

4.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

my $id; # CDF identifier (handle).

my $status; # Status returned from CDF library.
my $CDFname = "testl"; # File name of the CDF.

my $numDims = 2; # Number of dimensions.

my @dimSizes = {100,200}; # Dimension sizes.

my $encoding = HOST ENCODING; # Data encoding.

my $majority = ROW_MAIJOR; # Variable data majority.

my $format = SINGLE FILE; # Format of CDF.

$status = CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id);

47

if ($status = CDF_OK) UserStatusHandler ($status);

$status = CDF::CDFlib (PUT__, CDF_FORMAT _, S$format, NULL);
if ($status = CDF_OK) UserStatusHandler ($status);

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFIib is then used to change the format to single-file (which must be done before any variables are created in

the CDF).

The arguments to CDFIib in this example are explained as follows:

PUT_

CDF_FORMAT

format

NULL_

The first function to be performed. In this case an item is going to be put to the “current”
CDF (anew format). PUT _is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.” This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

The item to be put. in this case it is the CDF's format.

The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL function. NULL
indicates the end of the call to CDFlib. Specifying NULL at the end of the argument
list is required because not all compilers/operating systems provide the ability for a
called function to determine how many arguments were passed in by the calling function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations

would be the same.)

$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id,

PUT__, CDF_ENCODING , $encoding,

CDF_MAIJORITY_, $majority,
CDF _FORMAT , $format,

NULL);

if ($status = CDF_OK) UserStatusHandler ($status);

The purpose of each argument is as follows:

CREATE_

CDF_

The first function to be performed. In this case something will be created.

The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

" In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

48

CDFname
numDims
dimSizes

id

PUT_

CDF_ENCODING _

encoding

CDF_MAIJORITY _

majority

CDF_FORMAT _

format

NULL_

The file name of the CDF.
The number of dimensions in the CDF.
The dimension sizes.

The identifier to be used when referencing the created CDF in subsequent
operations.

This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will
be put to the CDF.

The item to be put - in this case the CDF's encoding. Note that the CDF did not
have to be selected. It was implicitly selected as the current CDF when it was
created.

The encoding to be put to the CDF.

This argument could have been one of two things. Another item to put or a new
function to perform. In this case it is another item to put - the CDF's majority.

The majority to be put to the CDF.

Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

The format to be put to the CDF.
This argument could have been either another item to put or a new function to

perform. Here it is another function to perform - the NULL function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

4.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT ,CDF_>* operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly

selected.’

¥ This notation is used to specify a function to be performed on an item. The syntax is <function_,item >,
? In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

49

rVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,rVAR > or <SELECT ,r/VAR NAME >
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,zZVAR > or <SELECT ,zVAR NAME >
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,ATTR > or <SELECT ,ATTR NAME >
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT ,gENTRY > operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT ,rENTRY > operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)
A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT ,zZENTRY > operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT ,rVARs RECNUMBER > operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs RECCOUNT > operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

50

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT ,rVARs RECINTERVAL >
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT ,rVARs DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT ,rVARs DIMCOUNTS > operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT ,rVARs DIMINTERVALS > operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT ,zZVAR RECNUMBER > operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR RECCOUNT > operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

51

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR _RECINTERVAL > operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT ,zZVAR DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT ,zZVAR DIMCOUNTS >
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT ,zZVAR DIMINTERVALS > operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)

A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,zZVAR SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)

4.3

When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT ,CDF STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.'”

Returned Status

CDFIlib returns a status code. Since more than one operation may be performed with a single call to CDFlib, the
following rules apply:

' The CDF library now maintains the current status code from one call to the next of CDFlib.

52

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 5 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

4.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id,
PUT , CDF FORMAT , $format,
CDF_MAJORITY _, $majority,
CREATE , ATTR , $attrName, $scope, \$attrNum,
rVAR , $varName, $dataType, $numElements,
$recVary, \@dimVarys, \$varNum,
NULL_);

Note that the functions (CREATE , PUT , and NULL) are indented the same and that the items (CDF ,
CDF FORMAT , CDF MAJORITY , ATTR , and rVAR) are indented the same under their corresponding
functions.

The following example shows the same call to CDFlib without the proper indentation.
$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id, PUT _,
CDF_FORMAT , $format, CDF_MAJORITY , S$majority, CREATE _,
ATTR , $SattrName, $scope, \$attrNum, rVAR , $varName, $dataType,
$numElements, $recVary, \@dimVarys, \$varNum, NULL);

The need for proper indentation to ensure the readability of your applications should be obvious.

4.5 Syntax

CDF1lib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather by the C compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

The syntax for CDFIib is as follows:

$status = CDF::CDFlib (fncl, iteml, argl, arg2, ...argN,
item?2, argl, arg2, ...argN,

53

itemN, argl, arg2, ..argN,
fnc2, iteml, argl, arg2, ...argN,
item?2, argl, arg2, ...argN,

itemN, argl, arg2, ..argN,

fncN, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ..argN,
NULL);
where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required

argument for the operation. The NULL _function must be used to end the call to CDFlib. The completion status, status,
is returned.

4.6 Operations. ..

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE _ Used to close an item.

CONFIRM Used to confirm the value of an item.

CREATE Used to create an item.

DELETE Used to delete an item.

GET _ Used to get (read) something from an item.

NULL _ Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT _ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 4.2.

<CLOSE ,CDF >
Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.
There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE ,rVAR >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

54

The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE ,zZVAR >
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,ATTR >
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: \$attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ATTR_EXISTENCE_>
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: \$attrName

The attribute name. This may be at most CDF ATTR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF >
Confirms the current CDF. Required arguments are as follows:

out: \$id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF_ACCESS >
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO MORE ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_CACHESIZE >
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

out: \$numBuffers

The number of cache buffers being used.

55

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING >
Confirms the decoding for the current CDF. Required arguments are as follows:

out: \$decoding
The decoding. The decodings are described in Section 2.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME >
Confirms the file name of the current CDF. Required arguments are as follows:

out: \$CDFname
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_ MODE >
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: \$mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 2.15.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE >
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: \$mode
The read-only mode. The read-only modes are described in Section 2.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT ,CDF STATUS > operation).
Required arguments are as follows:
out: \$status
The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zZMODE_>
Confirms the zMode for the current CDF. Required arguments are as follows:

out: \$mode

The zMode. The zModes are described in Section 2.14.

56

The only required preselected object/state is the current CDF.
<CONFIRM_,COMPRESS_CACHESIZE >
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.
The only required preselected object/state is the current CDF.
<CONFIRM_,CUREENTRY EXISTENCE >
Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<CONFIRM_,CURrENTRY_EXISTENCE >
Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).
If the rEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY_ EXISTENCE >
Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).
If the zEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY >
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The gEntry number.
The only required preselected object/state is the current CDF.

<CONFIRM_,gENTRY_ EXISTENCE >

57

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:
in: $entryNum
The gEntry number.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY >
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,rENTRY_EXISTENCE_>

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR >
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varNum
rVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_CACHESIZE >
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_EXISTENCE_>

58

Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_ PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM _,rVAR_RESERVEPERCENT >
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: \$percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_SEQPOS >
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: \$recNum
Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVARs DIMCOUNTS >
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@counts

Dimension counts. Each element of counts receives the corresponding dimension count.

The only required preselected object/state is the current CDF.

59

<CONFIRM_,rVARs DIMINDICES >
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@indices
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs DIMINTERVALS >
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: \@intervals
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM ,rVARs RECCOUNT >
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: \$recCount
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECINTERVAL >
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: \$recInterval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECNUMBER >
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: \$recNum
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM_,STAGE_CACHESIZE_>
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

60

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY >
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zENTRY_EXISTENCE_>

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zZVAR >
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varNum
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM _,zVAR_CACHESIZE >
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_DIMCOUNTS >
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: \@counts
Dimension counts. Each element of counts receives the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINDICES_>

61

Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: \@indices
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR DIMINTERVALS >
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: \@intervals
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR EXISTENCE >
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM ,zVAR PADVALUE >

Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An

explicit pad value has not been specified, the informational status code NO_ PADVALUE_SPECIFIED will be

returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM ,zZVAR RECCOUNT >

Confirms the current record count for the current zVariable in the current CDF. Required arguments are as

follows:

out: \$recCount
Record count.

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR RECINTERVAL >

Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as

follows:

out: \$recInterval

Record interval.

62

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR RECNUMBER >
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: \$recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR RESERVEPERCENT >
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: \$percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR SEQPOS >
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: \$recNum
Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_,ATTR >
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: S$attrName

Name of the attribute to be created. This can be at most CDF_ ATTR_ NAME LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: $scope
Scope of the new attribute. Specify one of the scopes described in Section 2.12.

out: \$attrNum

63

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE_,CDF >
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:

in: $CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.
in: $numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF _MAX DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: \@dimSizes

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For O-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: \$id
CDF identifier to be used in subsequent operations on the CDF.
A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT ,CDF FORMAT >, <PUT ,CDF ENCODING >, and
<PUT ,CDF_MAIJORITY > operations if necessary.

A CDF must be closed with the <CLOSE ,CDF > operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE ,rVAR >
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

in: $varName

Name of the rVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: $dataType

64

n:

n:

n:

out:

Data type of the new rVariable. Specify one of the data types described in Section 2.5.

$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

$recVary
Record variance. Specify one of the variances described in Section 2.9.

\@dimVarys
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

\$varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls

when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE ,zVAR >
A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

n:

n:

n:

$varName

Name of the zVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

$dataType
Data type of the new zVariable. Specify one of the data types described in Section 2.5.

$numElements
Number of elements of the data type at each value. For character data types (CDF _CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

$numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF. MAX DIMS.

\@dimSizes

65

The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).
in: SrecVary
Record variance. Specify one of the variances described in Section 2.9.
in: \@dimVarys
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).
out: \$varNum
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zZVAR_NUMBER > operation.
The only required preselected object/state is the current CDF.
<DELETE_,ATTR_>
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes,
which numerically follow the attribute being deleted, are immediately renumbered. When the attribute is
deleted, there is no longer a current attribute.
There are no required arguments.
The required preselected objects/states are the current CDF and its current attribute.
<DELETE_,CDF >
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.
The only required preselected object/state is the current CDF.
<DELETE _,gENTRY >
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<DELETE ENTRY >
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

66

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE ,rVAR >
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables, which numerically follow the rVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,rVAR_RECORDS_>
Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.
Required arguments are as follows:
in: $firstRecord
The record number of the first record to be deleted.
in: $lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zENTRY >
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zZEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE ,zZVAR >
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables, which numerically follow the zVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zZVAR_RECORDS >

Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the

67

records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:
in: $firstRecord
The record number of the first record to be deleted.
in: $lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,ATTR MAXgENTRY >
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,ATTR_MAXrENTRY >

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not

necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR MAXzENTRY >
Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR NAME >
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

68

out: \$attrName
Attribute name.
The required preselected objects/states are the current CDF and its current attribute.
<GET_,ATTR_NUMBER_>
Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: S$attrName

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the NUL
terminator).

out: \$attrNum
The attribute number.
The only required preselected object/state is the current CDF.
<GET_,ATTR_NUMGgENTRIES >
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:
out: \$numEntries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,ATTR_NUMTIENTRIES >
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: \$numEntries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_NUMZzENTRIES >
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:
out: \$numEntries
The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

69

<GET _,ATTR_SCOPE >
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: \$scope
Attribute scope. The scopes are described in Section 2.12.
The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM__ >
Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: \$checksum

The checksum mode of the current CDF (NO_CHECKSUM or MD5_CHECKSUM). The checksum
mode is described in Section 2.19.

The required preselected objects/states is the current CDF.
<GET_,CDF_COMPRESSION >
Inquires the compression type/parameters and compression percentage of the current CDF. This refers to the
compression of the CDF - not of any compressed variables. The compression percentage is the result of the
compressed file size divided by its original, uncompressed file size.'' Required arguments are as follows:
out: \$cType
The compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET_,CDF_COPYRIGHT >
Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as
follows:
out: \$Copyright
CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING >
Inquires the data encoding of the current CDF. Required arguments are as follows:

"' The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

70

out: \$encoding
Data encoding. The encodings are described in Section 2.6.
The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT >
Inquires the format of the current CDF. Required arguments are as follows:

out: \$format
CDF format. The formats are described in Section 2.4.
The only required preselected object/state is the current CDF.
<GET ,CDF INCREMENT >
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: \$increment
Incremental number.
The only required preselected object/state is the current CDF.
<GET ,CDF_INFO >
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:
in: $CDFname
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: \$cType
The CDF compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
out: \$cSize
If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: \$uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

71

<GET ,CDF LEAPSECONDLASTUPDATED >
Inquires the variable lastupdated of the current CDF. Required arguments are as follows:

out: \$lastupdated
The last entry (date) that a new leap second was added to the leap second table on which the CDF is
based upon. The value is of YYYYMMDD form. It can also be -1 (from older CDFs) or zero (0) if
the table is not used.

The only required preselected object/state is the current CDF.

<GET_,CDF_MAIJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: \$majority
Variable majority. The majorities are described in Section 2.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS >
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: \$numAttrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET ,CDF NUMgATTRS >
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: \$numAttrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMrVARS_>
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: \$numVars
Number of rVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMvVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: \$numAttrs

Number of vAttributes.

72

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS >
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: \$numVars
Number of zVariables.
The only required preselected object/state is the current CDF.

<GET ,CDF RELEASE >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: \$release
Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION >
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:
out: \$version
Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE >
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: $dataType
Data type.
out: \$numBytes
Number of bytes per element.
There are no required preselected objects/states.
<GET_,gENTRY_DATA >
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

73

<GET_,gENTRY DATATYPE_>
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,gENTRY NUMELEMS_>
Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET ,LIB COPYRIGHT >
Reads the Copyright notice of the CDF library being used. Required arguments are as follows:

out: \$Copyright
CDF library Copyright text.
There are no required preselected objects/states.

<GET ,LIB INCREMENT >
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: \$increment
Incremental number.
There are no required preselected objects/states.

<GET_,LIB_RELEASE >
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: \$release
Release number.
There are no required preselected objects/states.

<GET ,LIB subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

74

out: \$subincrement
Subincremental character.
There are no required preselected objects/states.

<GET_,LIB_VERSION >
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: \$version
Version number.
There are no required preselected objects/states.
<GET ,tENTRY DATA >
Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,fENTRY_DATATYPE >
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_rENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,r'VAR_ALLOCATEDFROM_>

75

Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: \$nextRecord
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:
in: $startRecord
The record number at which to begin searching for the last allocated record.
out: \$nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_BLOCKINGFACTOR >'"
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:
out: \$blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_COMPRESSION >
Inquires the compression type/parameters and the compression percentage of the current rVariable (in the
current CDF). The compression percentage is the result of the compressed size from all variable records divided
by its original, uncompressed varible size. Required arguments are as follows:
out: \$cType
The compression type. The types of compressions are described in Section 2.10.
out: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

"2 The item r'VAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

76

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR DATA >
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET ,rVAR _DATATYPE >
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR DIMVARYS >
Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_HYPERDATA >
Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: \@buffer
Values. The values are read from the CDF and placed in the variable buffer.
The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.
<GET_,rVAR MAXallocREC >
Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required

arguments are as follows:

out: \$varMaxRecAlloc

77

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_MAXREC_>
Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: \$varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,r'VAR NAME >
Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varName
Name of the rVariable.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXENTRIES >
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXLEVELS >
Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXRECORDS >
Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numRecords

Number of index records.

78

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR NUMallocRECS >
Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: \$numRecords
Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR NUMBER >
Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF VAR NAME LEN256 characters (excluding the
NUL terminator).

out: \$varNum
The rVariable number.
The only required preselected object/state is the current CDF.
<GET_,r'VAR_NUMELEMS_>
Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: \$numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF _UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_NUMRECS_>

Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond

to the maximum record written (see <GET ,rVAR MAXREC >) if the rVariable has sparse records. Required

arguments are as follows:

out: \$numRecords
Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_PADVALUE_>

Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT ,rVAR PADVALUE >), the informational status code

79

NO PADVALUE SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: \$value
Pad value. The pad value is read from the CDF and placed in the variable value.
The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR _RECVARY >
Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$recVary
Record variance. The variances are described in Section 2.9.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR _SEQDATA >

Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.
<GET_,rVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: \$sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
out: \@ArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_SPARSERECORDS_>

Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:

80

out: \$sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVARs_DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@dimSizes
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The only required preselected object/state is the current CDF.
<GET_,rVARs_ MAXREC >
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVariable may be inquired using the <GET ,rVAR MAXREC > operation. Required arguments are
as follows:
out: \$maxRec
Maximum record number.

The only required preselected object/state is the current CDF.

<GET_,rVARs NUMDIMS >
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: \$numDims
Number of dimensions.
The only required preselected object/state is the current CDF.
<GET_,r'VARs RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:
in: $numVars
The number of rVariables from which to read. This must be at least one (1).

in: \@varNums

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: \@buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in

81

this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 rVariables, each a 2-dimensional (2 by 3), the buffer should have 18 elements after the
read. As all variables’ have the same number of data values, then the buffer should return with 18
elements (2*3 + 2*3 + 2*3), the first 6 for the first variable, the next 6 for the second variable and the
last 6 for the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables.
<GET ,STATUS TEXT >

Inquires the explanation text for the current status code. Note that the current status code is NOT the status from

the last operation performed. Required arguments are as follows:

out: \$text
Text explaining the status code.

The only required preselected object/state is the current status code.
<GET_,zENTRY_DATA >

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).

Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_DATATYPE_>
Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this

is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

" A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.

82

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zZVAR_ALLOCATEDFROM_>

Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).

Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: \$nextRecord
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: $startRecord
The record number at which to begin searching for the last allocated record.
out: \$nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_BLOCKINGFACTOR >"
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: \$blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_COMPRESSION >
Inquires the compression type/parameters and compression percentage of the current zVariable (in the current
CDF). The compression percentage is the result of the compressed size from all variable records divided by its
original, uncompressed varible size. Required arguments are as follows:

out: \$cType

The compression type. The types of compressions are described in Section 2.10.

' The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

83

out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
out: \$cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_DATA >
Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: \$value
Value. The value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET ,zVAR DATATYPE >
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: \@dimSizes
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMVARYS_>
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zZVAR_HYPERDATA >
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current

84

dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: \@buffer
Values. The values are read from the CDF and placed in the variable buffer.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.
<GET_,zVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:
out: \$varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_MAXREC_>
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: \$varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NAME >
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varName
Name of the zVariable.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXENTRIES >
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXLEVELS_>
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance

for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

85

out: \$numlLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXRECORDS >
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_NUMallocRECS_>
Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: \$numRecords
Number of allocated records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_NUMBER_>
Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

out: \$varNum
The zVariable number.
The only required preselected object/state is the current CDF.
<GET_,zZVAR_NUMDIMS >
Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:
out: \$numDims
Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

86

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: \$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF _UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_NUMRECS >
Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET ,zZVAR _MAXREC >) if the zVariable has sparse records. Required
arguments are as follows:
out: \$numRecords
Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_PADVALUE_>
Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT ,zZVAR PADVALUE >), the informational status code
NO PADVALUE SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:
out: \$value
Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zZVAR_RECVARY >
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$recVary
Record variance. The variances are described in Section 2.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_SEQDATA >

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: \$value

Value. The value is read from the CDF and placed in the variable value.

87

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.
<GET_,zVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:
out: \$sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
out: \@sArraysParms
The sparse arrays parameters.

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR SPARSERECORDS >
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:
out: \$sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zZVARs MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one